Intramuscular fine-wire EMG investigation of stimulus-driven EMG-activity associated with covert orienting

Published: 01-05-2013 Last updated: 24-04-2024

To gain experience with a fine-wire intramuscular measurement technique for recording of short-latency muscle responses in neck muscles.

Ethical review Approved WMO **Status** Recruitment stopped

Health condition type Movement disorders (incl parkinsonism)

Study type Observational invasive

Summary

ID

NL-OMON38659

Source

ToetsingOnline

Brief title

Neck muscle EMG in covert orienting

Condition

Movement disorders (incl parkinsonism)

Synonym

Not applicable

Research involving

Human

Sponsors and support

Primary sponsor: Universitair Medisch Centrum Sint Radboud

Source(s) of monetary or material Support: Ministerie van OC&W

Intervention

Keyword: attention, EMG (electromyography), orienting response

Outcome measures

Primary outcome

Amplitude and timing of short-latency muscle response in a time window of

50-150 ms after stimulus presentation.

Secondary outcome

Reaction times of manual responses to stimuli presented ipsi- and contralateral of responding hand.

Study description

Background summary

The investigation is motivated by the hypothesis that freezing of gait in Parkinson*s disease (PD) may be explained by bilaterally simultaneous orienting responses accompanied by short-latency reflex-like activity in axial muscles. The bilaterally simultaneous nature of these responses interferes with the normally alternating activation pattern of these muscles during walking, thus inducing a freezing episode. In order to evaluate this hypothesis in PD, we first have to gain experience with a fine-wire intramuscular measurement technique for recording the short-latency muscle responses in neck muscles, which express the orienting response.

Study objective

To gain experience with a fine-wire intramuscular measurement technique for recording of short-latency muscle responses in neck muscles.

Study design

Observational study

Study burden and risks

The investigation requires a time investment of 2 hours. Preparation includes an ultrasound investigation of the neck to identify and localise the relevant muscles. Subsequently, a needle is inserted in four muscles in order to place the electrodes. This will cause pain of a level comparable to an intramuscular injection or venapuncture. Finally, muscle activity will be recorded during a computerised attention task. The invasive EMG measurements are frequently carried out in basic and medical research and are not associated with any risks.

Contacts

Public

Universitair Medisch Centrum Sint Radboud

R. Postlaan 4 Nijmegen 6525 GC NL

Scientific

Universitair Medisch Centrum Sint Radboud

R. Postlaan 4 Nijmegen 6525 GC NL

Trial sites

Listed location countries

Netherlands

Eligibility criteria

Age

Adults (18-64 years) Elderly (65 years and older)

Inclusion criteria

Age 20-60 years. Right handed.

Exclusion criteria

- visual impairments
- previous neck trauma or known anatomical neck deformities
- skin disease or infection affecting the suboccipital region
- clotting disorder
- pregnancy
- use of antiplatelet or antithrombotic drugs

Study design

Design

Study type: Observational invasive

Masking: Open (masking not used)

Control: Uncontrolled

Primary purpose: Other

Recruitment

NL

Recruitment status: Recruitment stopped

Start date (anticipated): 01-03-2013

Enrollment: 8

Type: Actual

Ethics review

Approved WMO

Date: 01-05-2013

Application type: First submission

Review commission: CMO regio Arnhem-Nijmegen (Nijmegen)

Study registrations

Followed up by the following (possibly more current) registration

No registrations found.

Other (possibly less up-to-date) registrations in this register

No registrations found.

In other registers

Register ID

CCMO NL43616.091.13